Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui-Dong Xie, Cheng-Zhi Xie, Xiao-Qing Wang,* Guang-Qiu Shen and De-Zhong Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: xqwang@tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.005 \text{ Å}$ Disorder in solvent or counterion R factor = 0.044 wR factor = 0.129 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography

All rights reserved

(5-Carboxy-1*H*-pyrazole-3-carboxylato- $\kappa^2 N^2$, O^3)bis(1,10-phenanthroline- $\kappa^2 N$,N')-cobalt(III) perchlorate 2.5-hydrate

In the title mononuclear complex, $[Co(C_5H_2N_2O_4)-(C_{12}H_8N_2)_2]ClO_4\cdot 2.5H_2O$, the Co^{III} atom is in a slightly distorted octahedral environment, coordinated by four N atoms from two *N*,*N'*-bidentate phenanthroline ligands, and one O and one N atom of the 5-carboxy-1*H*-pyrazole-3-carboxylate ligand. The molecules are linked into a three-dimensional framework by O-H···O hydrogen bonds and π - π interactions.

Comment

Rigid ligands are most commonly used for the rational construction of various molecular architectures. The 5-carboxy-1*H*-pyrazole-3-carboxylate ligand is asymmetric and has six potential coordination sites which can link together metal centers through a number of bridging modes (King *et al.*, 2004). A variety of complexes containing this ligand have been reported (Bentiss *et al.*, 2004; Frisch *et al.*, 2005; King *et al.*, 2004, 2003; Li *et al.*, 2005; Pan, Ching *et al.*, 2001; Pan, Frydel *et al.*, 2001). We report here the structure of a mononuclear cobalt(III) complex with 5-carboxy-1H-pyrazole-3-carboxylate and phenanthroline ligands.

The Co^{III} atom has a distorted octahedral coordination geometry (Fig. 1 and Table 1), in which the 5-carboxy-1*H*-pyrazole-3-carboxylate group and phenanthroline ligands act in chelating modes. Four nitrogen atoms (N1–N4) from two phenanthroline ligands, a pyrazole N atom and a carboxylate O atom are coordinated to the Co^{III} atom to form an isolated complex cation. The Co–N bond length involving the 5-carboxy-1*H*-pyrazole-3-carboxylate ligand is shorter than those involving the phenanthroline ligands. One of the pyrazole N atoms (N5) and the coordinated carboxylate group are deprotonated, while the other carboxylic acid group is protonated but non-coordinated.

The molecules are connected by $O-H\cdots O$ hydrogenbonding interactions (Table 2), forming a three-dimensional supramolecular network. The molecular packing is further stabilized by π - π interactions between the C16–C19/C23/C24 Received 13 March 2007 Accepted 15 April 2007

Figure 1

The structure the cation of (I), showing 30% probability displacement ellipsoids (small spheres for H atoms) and the atom-numbering scheme. The anion and the water molecules have been omitted for clarity.

benzene rings of the phenanthroline ligands at (x, y, z) and (-x, 1 - y, 1 - z), the centroid-centroid separation being 3.546 (2) Å.

Experimental

A mixture of Co(ClO₄)₂·6H₂O (0.4 mmol, 146 mg), phenanthroline (0.4 mmol, 79.3 mg), potassium 5-carboxy-1H-pyrazole-3-carboxylate (0.5 mmol, 97 mg) and H₂O (18.0 ml) in a 1:1:1.25:2500 molar ratio was sealed in a 25 ml stainless steel reactor with a Teflon liner; the mixture was heated to 433 K, kept at 433 K for 72 h, and then cooled to room temperature. After 2 days, orange block-shaped crystals of the title complex were collected by filtration (yield 70%). IR spectra analysis: strong characteristic bands corresponding to two carboxylic acid groups in the 5-carboxy-1H-pyrazole-3-carboxylate ligand were observed at 1689 and 1637 cm⁻¹ for asymmetric stretching, and at 1490 and 1430cm^{-1} for symmetric stretching; the vibration frequencies of the phenanthroline ligand were shifted after coordination; the peak at 1605 cm⁻¹ corresponding to ν (C—N) shifts to 1585 cm⁻¹ upon coordination, while the phenanthroline ν (C=C) frequency of 1500 cm⁻¹ was shifted to about 1521 cm⁻¹ (Yang et al., 2003). No N5bound H atom was found as the infrared spectrum did not show a strong N-H absorption peak near 3490 cm^{-1} .

Crystal data

$[Co(C_5H_2N_2O_4)(C_{12}H_8N_2)_2]$ -	$\beta = 129.50 \ (3)^{\circ}$
$ClO_4 \cdot 2.5H_2O$	V = 5870 (2) Å ³
$M_r = 717.91$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
$a = 33.905 (7) \text{ Å}_{-}$	$\mu = 0.75 \text{ mm}^{-1}$
b = 9.6566 (19)Å	T = 295 (2) K
c = 23.237 (5) Å	$0.25 \times 0.20 \times 0.16 \ \mathrm{mm}$

Data collection

```
Rigaku R-AXIS RAPID IP area-
detector diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{\rm min} = 0.802, T_{\rm max} = 0.866
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	94 restraints		
$wR(F^2) = 0.129$	H-atom parameters constrained		
S = 1.01	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$		
6717 reflections	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$		
475 parameters			

27567 measured reflections

 $R_{\rm int}=0.037$

6717 independent reflections

5351 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Co1-N6	1.887 (2)	O3-C29	1.222 (3)
Co1-O4	1.8968 (18)	O4-C29	1.302 (3)
Co1-N2	1.938 (2)	N5-N6	1.333 (3)
Co1-N1	1.942 (2)	N5-C26	1.363 (3)
Co1-N4	1.943 (2)	N6-C28	1.347 (3)
Co1-N3	1.954 (2)	C26-C27	1.388 (4)
O1-C25	1.210 (3)	C27-C28	1.375 (3)
O2-C25	1.315 (3)		. ,

Table 2Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
0.85	1.91	2.756 (5)	175
0.85	2.28	3.121 (11)	173
0.85	1.77	2.591 (5)	161
0.85	2.07	2.874 (4)	157
0.85	2.38	3.187 (8)	159
	<i>D</i> -H 0.85 0.85 0.85 0.85 0.85	$\begin{array}{c cccc} D-H & H \cdots A \\ \hline 0.85 & 1.91 \\ 0.85 & 2.28 \\ 0.85 & 1.77 \\ 0.85 & 2.07 \\ 0.85 & 2.38 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) $x, -y, z - \frac{1}{2}$.

C-Bound H atoms were placed in geometrically idealized positions and were refined isotropically in the riding-model approximation, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. O-bound H atoms were initially located in difference Fourier maps and were refined isotropically in the riding-model approximation with O-H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The perchlorate ion is disordered over two positions with occupancies of 0.729 (10) and 0.271 (10). The Cl-O and O···O distances in each disordered component were restrained to be equal.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support by the National Natural Science Foundation of China (grant No. 50590402).

References

Bentiss, F., Roussel, P., Drache, M., Conflant, P., Lagrenee, M. & Wignacourt, J. P. (2004). J. Mol. Struct. 707, 63–68.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Frisch, M. & Cahill, C. L. (2005). Dalton Trans. pp. 1518–1523.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- King, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 42, 3492–3500.
- King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852–861.
- Li, X.-H., Lei, X.-X., Tian, Y.-G. & Wang, S. (2005). Acta Cryst. E61, m702m704.
- Pan, L., Ching, N., Huang, X.-Y. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.
- Pan, L., Frydel, T., Sander, M. B., Huang, X.-Y. & Li, J. (2001). *Inorg. Chem.* **40**, 1271–1283.
- Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, J., Ma, J.-F., Wu, D.-M., Guo, L.-P. & Liu, J. F. (2003). J. Mol. Struct. 657, 333–341.